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Abstract 

Research on Arabic Dialect Treatment has recently 

become important in the literature. Although most work 

on these dialects considers only the messages or the 

portion of text written in Arabic letters, another style of 

writing has emerged on social media. This style is 

known by Arabizi and combines between Latin letters 

and numbers. To address this emergent problem in the 

context of automatic translation, we present an Arabic 

dialect translation system composed by two modules: 
Transliteration and translation. We develop each mod-

ule with a statistical and a neural model. To test our 

system, we used the Algerian portion of a multi-

dialectal Arabic corpus named PADIC. Experimental 

results show that a good transliteration improves the 

translation results. Moreover, the neural transliteration 

gives better results than the statistical transliteration. 

However, the statistical translation still gives better 

results that the neural translation.  

1 Introduction 

Machine Translation (MT) represents an active 

researcher area (Chand 2016). Just recently, a new 

approach has emerged that involves neural net-

works. This approach is known as Neural Machine 

Translation (NMT) (Sutskever et al. 2014; Cho et 

al. 2014a; Bahdanau et al. 2014). Unfortunately, 

the work on NMT has not focused yet on Arabic 

language and its dialects. Among all the work on 

NMT, we were able to find only one paper that 

describes NMT on the Arabic language (Almahairi 

et al. 2016) and no work involving NMT on Arabic 

Dialects. 

Nowadays, users in social media write in this way: 

1) By using only Arabic letters for example, “ حبيت

من فضلكم6نسقسيكم شحال يدير ايفون ”, which means, “I 

want to ask you, what is the price of iphone6 

please.  

2) By combining between Latin letters and num-

bers. For example: “walahi rabi ykon fi el3awn” 

which means: “I swear god will help you. This 

way of writing recognized by “Arabizi”, (Darwish 

2014).The work in (Bies et al. 2014) considers 

Arabizi as a challenge for Arabic NLP research. To 

address this challenge, we consider Arabizi Trans-

literation as the first module (or as pre-processing 
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step) of Arabic dialect treatment where the ana-

lyzed messages combining between the Arabizi 

and the Arabic letters. We survey a lot of work on  

Statistical Machine transliteration (SMTR) (van 

der Wees et al. 2016; Al-Badrashiny et al. 2014; 

Darwish 2014) and other combing between trans-

literation and translation (May et al. 2014) and 

(van der Wees et al. 2016). However, the literature 

has not contained any work related to Neural Ma-

chine Transliteration (NMTR) of Arabizi or related 

to. To address this problem, we propose an Arabic 

dialect translation system composed of two com-

ponents or modules: The first one for Arabizi 

transliteration and the second one for Arabic dia-

lect translation.  

2 Related work 

The work of (May et al. 2014) and (van der Wees 

et al. 2016) present an Arabizi to English Statisti-

cal Machine Translation. Despite the fact that the 

two works do not focus on transliteration of 

Arabizi to Arabic but also evaluate the perfor-

mance of MT system, they differ in two points: 1) 

the first one constructs a transliterated corpus 

semi-automatically, with input from experts, while 

the second one constructs it automatically. 2) The 

first one learns weights of character from an 

Arabizi-Arabic text while the second one uses uni-

form weights.  

However, we have not found any work that com-

bines NMTR and SMT or NMT for Arabizi.  

3 The Arabic dialect translation frame-

work 

The general idea of this approach is to transliterate 

an Arabizi corpus with SMTR and NMTR tech-

niques and translate the transliterated corpus. 

3.1      The transliteration step 

To transliterate a given text written in Arabizi to 

the same text written in the  Arabic alphabet, we 

follow four main sub-steps: 
     1) We construct a parallel Arabizi corpus con-

taining 6233 sentences. We based our work on 

PADIC (Meftouh et al. 2015) (which is written in 

Arabic letters), which we transliterated to Arabizi. 
To do that, we first define a rule-based algorithm 

to automatically transliterate Arabic Dialect writ-

ten in Arabic letters to Arabizi form. This algo-

rithm transforms the letter (ع) to the number (3), 

the letter (غ) to the two letters (gh),…etc. Unfortu-

nately, at this stage, we can only correct 1300 sen-
tences.  

     2) Based on the work of (Darwish 2014), we 

divide each sentence to a set of word and each 
word to a set of characters, so we work at the  

character level. 

     3) We apply an SMT-based phrase on our data. 
These data are first trained using a language mod-

el. The language model is built with the target lan-

guage (in our case, Arabic Dialect written with 

Arabic letters). For training the transliteration 
model, we run a character based-alignment. We 

finish by the tuning process, for determining the 

best results for each transliteration pair. 
4) We also apply to the same data an NMT 

model. In this paper, we opt to use RNN Encoder-

decoder model. The RNN Encoder-decoder pro-
posed by (Cho et al. 2014a) and (Sutskever et al. 

2014). The choice to use an RNN Encoder-decoder 

is mainly due to the fact that this model is consid-

ered as the simplest version of neural machine 
translation. To train this model, we firstly replace 

some unknown characters by the term “unk”. We 

use a development set separated from the training 
set to measure how well the model generalizes 

during training. Finally we use an external lexicon 

indicating the mapping between characters and 

their probabilities. To create this lexicon, we use a 
word alignment tool (character-based)(Neubig 

2016).Neural Machine Transliteration based on a 

character level.  
In this paper, we choose to use RNN Encoder-

decoder model. To train this model, we first re-

place some unknown character by the term “unk”  
then, we use a development set separating from 

training set to measure how well the model is ge-

neralizing during the training. Finally, we use an 

external lexicon indicating mapping between cha-
racter and their probabilities. To create this lexi-

con, we use a character Alignment (Neubig 2016). 

3.2       The translation step 

The main idea of this step is to translate Arabic 

Dialect to MSA. This will allow us, in the future, 

to consider MSA as a pivot and translate to English 
or French. We assume that each sentence is written 

in Arabic letters only or Arabizi only. We do not 

treat, in this paper, the case where we find an Ara-
bic letter and Arabizi in the same sentence. We 
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leave this problem for future work. This compo-

nent could take as an input arabizi messages after 

transliteration or the messages written with Arabic 
letters. So it can receive as the input messages pro-

vided from our Arabic dialect corpus or a set of 

messages that we transliterate before (so the output 
of the transliteration component). In this step, we 

follow three main sub-steps. 1) We begin by reas-

sembling the words of the transliterated corpus. 
This is due to the fact that transliteration is word-

based level and translation is phrase-based level. 

However, we do not need to reassemble in the case 

of Arabic dialect translation (when corpus written 
with Arabic letters), as shownin Fig.1.2) We apply 

an SMT model to the resulting sen-tences As in the 

transliteration task, we have to build the language 
model, train it by running a word-level Alignment 

and call the tuning process. 

3) We also apply an NMT model to the same sen-
tences. We also use the use RNN Encoder-decoder 

model. We follow the same steps as the translitera-

tion, so we detect the unknown words and train the 

model and create an aligned lexicon. The unique 
difference compared the transliteration is that the 

model is phrase-based and not word-based. model. 

4 Experiments and results 

Our System is composed by two components: The 

transliteration and the translation component. For 

each one, we apply the statistical and neural mod-

els. Concerning Statistical model, we use Moses 

toolkit (Koehn et al. 2007), with KenLM (Heafield 

2011) as language model and GIZA++ as align-

ment tool (Och and Ney 2000). Concerning Neural 

model, based on (Neubig 2016), we use Lamtram 

toolkit (Neubig 2015), which is the combination of 

the of the two model(Bahdanau et al. 2014) and 

(Luong et al. 2015). Before utilizing lamtram 

toolkit, we have to install dynet library.  

As shown in Table 1, we conduct our experi-

ments on 4 distinct training data sets. They differ 

in size. For each data set, we present the translit-

eration and the translation results. For the translit-

eration, we consider the statistical (SMTR) and 

Neural (NMTR) transliteration. For translation too, 

we consider statistical (SMT) and neural (NMT) 

translation. We observe that SMT gives better re-

sults than NMT. Moreover, SMT work well where 

it is combined with SMTR.   

To show the utility of proceeding to translitera-

tion before translation, we conduct a SMT on the 

Arabizi corpus test without transliterate it. We car-

ry out this experiment for the biggest training cor-

pus (so 100% of the total size). We obtained a bleu 

score= 4.26 where the score after SMTR= 6.01 and 

the reference= 10.74. 

 
Trainig 

corpus size 

Transliteration Translation  BLEU 

score 

 

 

10% 

 

Reference 

 

SMT 6.31 

NMT 0.00 

SMTR 

 

SMT 2.65 

NMT 0.00 

NMTR 

 

SMT 2.40 

NMT 0.0 

 

 

25% 

Reference 

 

SMT 8.02 

NMT 1.71 

SMTR 

 

SMT 3.47 

NMT 0.00 

NMTR 

 

SMT 4.49 

NMT 0.0 

 

 

50% 

 

Reference 

 

SMT 10.02 

NMT 2.34 

SMTR 

 

SMT 5.21 

NMT 0.0 

NMTR 

 

SMT 4.21 

NMT 0.0 

100% 

Reference 
SMT 10.74 

NMT 6.25 

SMTR 
SMT 6.01 

NMT 4.54 

NMTR 
SMT 3.94 

NMT 4.13 

Table 1: SMT Vs NMT of Arabizi 

5 Conclusion and Perspectives 

We present and implement an approach composed 

by two components: Transliteration and transla-

tion. We consider the statistical and neural translit-

eration and translation. Through this paper, we 

observe that for a small corpus of Arabizi, neural 

machine transliteration gives better results than 

statistical transliteration, whereas statistical trans-

lation still gives better results than neural transla-

tion.  

In future work, we will try to generalize this idea 

by testing our system on other corpora like on Cot-

terell et al. (Cotterell et al. 2014) corpora.  
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