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Abstract

Natural language understanding (NLU) is
a core component of a dialogue system.
Recently recurrent neural networks (RNN)
obtained strong results on NLU due to
their superior ability of preserving sequen-
tial information over time. Traditionally,
the NLU module ignores the contexts of
utterances and tags semantic slots for ut-
terances considering their flat structures,
as the underlying RNN structure is a lin-
ear chain. However, contexts and linguis-
tic properties provide informative cues for
better understanding. This paper intro-
duces a novel model, a generalization of
RNN to additionally incorporate 1) con-
textual utterances and 2) non-flat network
topologies guided by prior knowledge.
The model automatically figures out the
salient and accurate contexts and substruc-
tures that are essential to predict the se-
mantic tags of the given sentences, result-
ing in better understanding. The experi-
ments showed the significant improvement
on contextual and structural language un-
derstanding scenarios.

1 Introduction

Goal-oriented spoken dialogue systems are being
incorporated in various devices and allow users
to speak to systems freely in order to finish tasks
more efficiently. A key component of these con-
versational systems is the natural language un-
derstanding (NLU) module-it refers to the tar-
geted understanding of human speech directed at
machines (Tur and De Mori, 2011). A typical
NLU first decides the domain of user’s request
given the input utterance, and based on the do-
main, predicts the intent and fills associated slots

corresponding to a domain-specific semantic tem-
plate (Tur and De Mori, 2011). For example, a
user utterance, ‘“‘show me the flights from seattle
to san francisco” can be formulated as a seman-
tic frame, find_flight(origin="seattle”, dest="san
francisco”). Traditionally, slot filling is framed
as a word sequence tagging task, where the IOB
(in-out-begin) format is applied for representing
slot tags (Pieraccini et al.,, 1992; Wang et al.,
2005). With the advances on deep learning, Yao
et al. (2013) and Mesnil et al. (2015) employed
RNNs for sequence labeling in order to perform
slot filling. However, the above studies focused on
single-turn understanding and ignored the linguis-
tic properties when tagging sequences.

In order to address the issues and better learn
the sequence tagging models, this paper proposes
a generalization of RNNs that automatically learn
how to incorporate contextual and structural atten-
tion for generating sentence-based representations
specifically for modeling sequence tagging.

2 Proposed Model

Given an utterance with a sequence of
words/tokens § = wq, ..., wy, our NLU model
is to predict corresponding semantic tags
¥ = w1, ..., yr for each word/token by incorporat-
ing 1) history sentences and 2) knowledge-guided
structures for contextual and structural language
understanding respectively. The proposed model
is illustrated in Figure 1. The knowledge encoding
module first leverages contextual or structural
knowledge {z;} to generate a set of encoded
knowledge representations. The model learns the
representation for the whole sentence by paying
different attention on the encoded knowledge
stored in the memory. Then the learned vector
encoding the contexts or structures is used for
improving the semantic tagger.
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Figure 1: The illustration of contextual and structural attention networks for NLU.
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Figure 2: The illustration of substructures ob-
tained from the utterance “show me the flights from
seattle to san francisco”.

2.1 Knowledge Encoding Module

The top-left component of Figure 1 illustrates the
module for modeling contexts and structures, con-
textual language understanding and structural lan-
guage understanding described below.

Contextual LU To store the knowledge in the
previous turns, we convert each utterance from
previous turns, x;, into a memory vector m; by
embedding the utterances in a continuous space
through a CNN (Chen et al., 2016b), which is mo-
tivated by the memory networks (Weston et al.,
2015). Therefore, the contextual LU module
would capture the most salient parts in the history
through an attention mechanism to better under-
stand the current utterance.

Structural LU The prior knowledge obtained
from external resources, such as dependency re-
lations, knowledge bases, etc., provides richer in-
formation to help decide the semantic tags given

an input utterance. This paper takes dependency
relations for knowledge encoding, and other struc-
tured relations can be applied in the same way.
The input utterance is parsed by a dependency
parser, and the substructures are built according
to the paths from the root to all leaves (Chen
and Manning, 2014). For example, the depen-
dency parsing of the utterance “show me the flights
from seattle to san francisco” is shown in Fig-
ure 1, where the associated substructures are ob-
tained from the parsing tree for knowledge encod-
ing (Chen et al., 2016a) illustrated in Figure 2.
Each substructure is also encoded into a knowl-
edge vector via a CNN in order to help understand-

ing.

2.2 End-to-End Training

The model embeds all contextual and structural
knowledge into a continuous space and stores em-
beddings of all z’s in the knowledge memory. The
representation of the input utterance is then com-
pared with encoded knowledge representations to
integrate the salient history and carried structures
guided by knowledge via an attention mechanism.
Then the knowledge-guided representation of the
sentence is taken together with the word sequence
for estimating the semantic tags. The whole model
can be trained in an end-to-end manner by maxi-
mizing the probability of output slots ¢ given the
sentence § and automatically learned knowledge-
guided representation o: i = RNN(o, §). Specif-
ically, given only the current utterance and asso-
ciated slot tags along with their prior sentences or



Model (Klg.) Result
Contextual First-Turn  Other  Overall
- RNN (X) 57.6 56.0 56.3
-RNN (V) 69.9 60.8 62.5
- Proposed (v) 73.81 66.5" 68.0
Structural Small Medium  Large
-RNN (X) 68.58 84.55 9297
- CNN (X) 73.57 85.52  93.88
- DCNN (v) 70.24 83.80 93.25
- Tree-RNN (V) 73.50 83.92  92.28
- Proposed (V) 74.60"  87.99" 94.86'

Table 1: The F1 scores of predicted slots. Small:
1/40 set; Medium: 1/10 set; Large: original set. (f
indicates significant improvement over baselines
with p < 0.05 in the t-test.)

the dependency relations, the model can automat-
ically decide the knowledge encoding network,
CNNj,, the sentence encoding network, CNNj,,
the attention weights, the knowledge-guided rep-
resentation network, NN, and the final RNN
tagger.

3 Experiments

The proposed model is evaluated in the 1) contex-
tual understanding scenario using multi-turn data
from the Microsoft Cortana and the 2) structural
language understanding scenario using the bench-
mark ATIS dataset. Table 1 shows the experimen-
tal results, where the proposed model outperforms
all baselines for both contextual and structural lan-
guage understanding.

4 Conclusion

This paper proposes a novel model that leverages
contexts and structures to improve natural lan-
guage understanding, which can automatically fig-
ure out the salient and accurate contexts and sub-
structures that are useful to predict the semantic
tags of the current sentence. The experiments
show benefits and effectiveness of the proposed
model on both contextual and structural language
understanding tasks, where the salient history sen-
tences and substructures result in promising re-
sults on the Microsoft Cortana data and the bench-
mark ATIS dataset.
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