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Abstract

In polysynthetic languages, a word can con-
sist of many individual morphemes, which
causes a strong need for morphological seg-
mentation. However, many polysynthetic lan-
guages are minimal-resource languages, mak-
ing the training of state-of-the-art neural seg-
mentation systems difficult. Here, we present
new morphological segmentation datasets for
four indigenous Mexican languages, and show
that neural sequence-to-sequence models ob-
tain competitive performance even for small
amounts of training data. Additionally, we in-
troduce two novel data augmentation and two
novel multi-task approaches, which further in-
crease performance.

1 Introduction

Due to the advent of computing technologies to
indigenous communities all over the world, nat-
ural language processing (NLP) applications for
languages with limited computer-readable textual
data are getting increasingly important. We aim at
improving morphological surface segmentation—
the task of splitting a word into the surface
forms of its smallest meaning-bearing units,
its morphemes—for these languages. Recover-
ing morphemes provides information about un-
known words, and is thus especially important for
polysynthetic languages with a high morpheme-

∗*The first two authors contributed equally.

to-word ratio and a consequently large overall
number of words.

Because of its relevance for linguistic analy-
sis and down-stream tasks (Creutz et al., 2007;
Dyer et al., 2008), segmentation has been tack-
led in many different ways (Creutz and Lagus,
2002; Ruokolainen et al., 2013, 2014). Recently,
also neural approaches have been used, but mainly
for canonical segmentation (Cotterell et al., 2016;
Kann et al., 2016; Ruzsics and Samardzic, 2017).
For surface segmentation, neural models have
been used by Wang et al. (2016).

Here, we want to add two new questions to this
line of research: (i) How can we successfully seg-
ment words in polysynthetic languages? (ii) Are
neural networks applicable for morphological seg-
mentation in minimal-resource settings and how
can they be improved?

Our experiments show that neural sequence-
to-sequence models perform roughly on par with
strong state-of-the-art baselines for the polysyn-
thetic languages Mexicanero, Nahuatl, Wixarika
and Yorem Nokki in a minimal-resource setting.
However, adding the multi-task and data augmen-
tation methods which we will introduce in this
work yields up to 5, 05% absolute accuracy im-
provement over our strongest baseline for 3 out of
4 languages.



2 Polysynthetic Languages and Datasets

Polysynthetic languages are languages which are
highly synthetic, i.e., single words can be com-
posed of many individual morphemes. This prop-
erty makes surface segmentation of polysynthetic
languages especially complex but relevant for fur-
ther linguistic analysis as well as down-stream
tasks. We experiment on Mexicanero, Nahuatl,
Yorem Nokki and Wixarika, which belong to the
Yuto-Aztecan language family.

To create our datasets, we make use of both,
words consisting of multiple morphemes and
words consisting of one single morpheme, taken
from books of the collection archive of indigenous
languages (Canger, 2001; Lastra de Suárez, 1980;
Gómez and López, 1999; Freeze, 1989). We first
build test sets consisting of 40% of the available
data, and then use 20% of the remaining instances
to make the development sets. All other exam-
ples are used for training. We gathered a total
of 1063 words for Yorem Nokki, 888 for Mexi-
canero, 1123 for Nahuatl, and 1394 for Wixarika.

3 Model and Extensions

Our approach is based on the neural sequence-
to-sequence model introduced by Bahdanau et al.
(2015) for machine translation. The first part of
the model encodes the input sequence and con-
sists of a bidirectional gated recurrent neural net-
work (GRU) (Cho et al., 2014). Our input is the
sequence of characters of the input word, rep-
resented by embedding vectors. The decoder is
a single GRU, defining a probability distribution
over strings in Σ∗ ∪ S, for the language’s alpha-
bet Σ and a morpheme separation symbol S. The
probability of each new character is computed us-
ing an attention mechanism, and we employ an
output softmax layer over Σ ∪ S.

Multi-task training. In order to leverage unla-
beled data (MTT-U) or even random strings (MTT-
R) during training, we employ multi-task training
(Caruana, 1993) and define an autoencoding aux-
iliary task, which consists of producing an output
which is equal to the original input string. We ex-
pect this to bias the model towards copying (the
most frequent action it should take) and, in the
case of MTT-U, to provide additional training data
for the decoder’s character language model.

Data augmentation. Another way to im-
prove performance is to extend the available train-
ing data using unlabeled data or random strings.

We build new training examples in a similar fash-
ion as for the multi-task setup. All instances are of
the form w 7→ w, where either (i) w ∈ V with V
being words from a given unlabeled corpus (DA-
U), or (ii) w ∈ R with R being a set of sequences
of random characters from the alphabet Σ of the
language, i.e., R ⊂ Σ∗ (DA-R).

For both proposed methods, we treat the amount
of additional training examples as a hyperparame-
ter to be optimized on the development set.

4 Experiments and Results

Data. In addition to our datasets, for the multi-
task training and data augmentation we use unla-
beled data, collected from Gutierrez-Vasques et al.
(2016), Mager Hois et al. (2017) and Maldon-
ado Martnez et al. (2010).

Baselines. We compare our novel approaches
to a fully supervised attention-based encoder-
decoder RNN (Bahdanau et al., 2015) (S2S), the
semi-supervised version of MORFESSOR (Koho-
nen et al., 2010) (MORF), and a strong discrimina-
tive conditional random fields model for segmen-
tation by Ruokolainen et al. (2014) (CRFS).

Results. The final results of our proposed ap-
proaches as well as the baselines are shown in Ta-
ble 1. It can be seen that S2S performs on par
with CRFS for all languages but Nahuatl. S2S
and CRFS both clearly outperform MORFESSOR
(MORF).

All our proposed methods except for DA-U im-
prove over S2S for all languages. DA-U, in turn,
performs worse than S2S for all languages except
for Mexicanero. This shows clearly that simple
adding of corpus data confuses the model: it er-
roneously learns to not segment words that con-
sist of multiple morphemes. Notably, this does not
happen for random strings. We thus conclude that
multi-task training (instead of simple data aug-
mentation) is crucial for the use of unlabeled data,
while random strings can be used for data augmen-
tation as well as multi-task training.

Finally, with the exception of Nahuatl for which
CRFS performs best, all of our novel methods
achieve a higher accuracy than all baselines for
all languages. This shows the effectiveness of
our neural approaches for morphological segmen-
tation in minimal-resource settings.



MTT-U MTT-R DA-U DA-R S2S MORF CRFS
Mexicanero 0.8051 0.7955 0.7611 0.7983 0.7504 0.3364 0.7837
Nahuatl 0.6004 0.6027 0.5541 0.6018 0.5585 0.4044 0.6444
Wixarika 0.5895 0.6134 0.5425 0.6188 0.5754 0.3989 0.5866
Yorem Nokki 0.6856 0.7101 0.6212 0.6936 0.6569 0.4812 0.6596

Table 1: Accuracy of our approaches and baseline systems.

5 Conclusion

We investigated the applicability of neural
encoder-decoder models to the task of surface seg-
mentation for polysynthetic languages in minimal-
resource settings. Our results showed that neu-
ral networks perform comparatively to or better
than several strong baselines. We further pro-
posed two novel multi-task approaches and two
novel data augmentation methods to additionally
increase performance on the task. For Mexi-
canero, Wixarika and Yorem Nokki our proposed
methods outperform all baselines by up to 5.05%
absolute accuracy.
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