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Abstract

We propose a multi-head attention mechanism as a blending layer in a neural network model that
translates natural language to a high level behavioral language for indoor robot navigation. We
follow the framework established by (Zang et al., 2018a) that proposes the use of a navigation
graph as a knowledge base for the task. Our results show significant performance gains when
translating instructions on previously unseen environments, therefore, improving the generaliza-
tion capabilities of the model.

1 Background

Developing robotic agents that can follow natural language instructions remains an open challenge. Ide-
ally, a robot should be able to correctly create an executable navigation plan given a natural language
instruction by a user. The objective is to reach a destination from a starting point in a complex but known
indoor environment (Figure 1(a)), which could be represented as a graph (Sepulveda et al., 2018), where
the nodes correspond to locations (e.g., office, bedroom), and the edges represent high-level behaviors
(e.g., follow corridor, exit office) that allow a robot to navigate between neighboring nodes (Figure 1(b)).
We assume the robot can robustly execute every high level behavior, as in (Sepulveda et al., 2018).

Previous works pose this problem as a translation of instructions to a plan of sequentially executed
high-level behaviors (Zang et al., 2018b), leveraging the environment topology through its graph repre-
sentation (Zang et al., 2018a). Specifically, a supervised learning model takes as input a text instruction
from the user, the robot initial location, and the behavior graph of the environment encoded as triplets
(n1, b, n2), where n1, n2 are places and b the behavior that connects both. It then predicts a sequence of
behaviors to reach the instructed destination by means of a typical sequence-to-sequence model with a
single soft attention layer that fuses the graph and instruction information. However, at inference time
this approach suffers a severe performance hit on environments that were not seen during training. In
this work, we propose to modify the attention layer by using a multi-headed mechanism that improves
the model generalization capabilities, therefore, increasing performance in unseen environments.

Figure 1: (a) Map of an environment. (b) Its behavioral navigation graph. (c) Proposed model. The
natural language instruction on (c) is translated to a sequential behavior plan. The path in (a) and the
node-edges in (b), both highlighted in red, correspond to the behaviors predicted by the model (c).
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2 Methodology

Approach Inspired by the success of the Transformer model (Vaswani et al., 2017) on encoding dif-
ferent relationships of multi-modal data (Tan and Bansal, 2019; Zhou et al., 2020), we propose to use
its multi-head attention mechanism to blend information from the two representation sub-spaces, natural
instructions and navigation graph, in a more useful way. That is, different heads will specialize in fusing
different patterns between both information sources. We hypothesize that this capability might help the
decoder to alleviate the performance hit in novel environments at test time.

Proposed Model The architecture (Figure 1(c)) considers an initial encoding layer, where each word
of the instruction is encoded using pre-trained GloVe descriptors (Pennington et al., 2014), and each
triplet set is one-hot encoded to indicate which of the B behaviors and N nodes constitute each triplet.
Subsequently, the encodings are embedded using bi-directional Gated Recurrent Units (GRU) (Chung
et al., 2014). The multi-modal representations are then fused by the newly added multi-head attention
mechanism. A fully connected layer downstream reduces the dimensionality of the fused information,
which is used as context C by a recurrent GRU decoder. The decoder takes the initial position and
translates the instruction to a sequential behavioral plan, soft attending its context C at each time step.
The loss function is cross entropy with respect to correct translations.

Experimental Setup We use the dataset introduced in (Zang et al., 2018a) with the original train and
test splits, where the Test-Repeated split has environments that were seen by the agent at training time,
and the Test-New split has previously unseen maps. In total, we consider 10,040 instructions (8,066
for training) distributed across 100 maps, each with 6 to 65 rooms. We also use the same performance
metrics: F1 score, edit distance (ED) to ground truth, and M@k metrics, where we have a match if the
translation is under k moves away from the ground truth1, with M@0 being an exact match. The model
was trained for 200 epochs, with a batch size of 256. The multi-head attention layer was set to have 4
heads. The rest of the model parameters are as established in (Zang et al., 2018a).

3 Results & Discussion

Results Table 1 details the performance of our approach, along with the baseline reported by (Zang et
al., 2018a) as well as by our own implementation of that model, which notably was not able to perform
as expected on the Test-Repeated set. As a result of using our multi-headed approach, we see a clear
performance gain (23.2%) on exact match for the Test-New set, which confirms an improved generaliza-
tion capability by our translation model. However, for the Test-Repeated set we see a 8.5% decrease in
exact match with respect to the original approach (although we do beat our own implementation of the
baseline by 25.9% in this set, and by 18.4% in the Test-New set).

Architecture Test Repeated Test New
F1 ↑ M@0 ↑ M@1 ↑ M@2 ↑ ED ↓ F1 M@0 M@1 M@2 ED

Baseline (Zang) 93.54 61.17 83.30 92.19 0.75 90.22 41.71 69.82 82.08 1.22
Baseline (Ours) 91.67 44.43 76.93 89.16 1.01 90.89 43.41 72.64 87.25 1.09

Ours 93.07 55.96 81.31 90.16 0.84 92.57 51.40 79.06 89.43 0.91

Table 1: Results. The symbol ↑ indicates that higher results are better in the corresponding column;
likewise ↓ indicates that lower is better.

Conclusions In this paper, we introduced multi-head attention as a useful mechanism for leveraging
a knowledge base to improve natural language translations to a high-level behavioral language that is
understandable and executable by robots, exhibiting a better performance on never-before-seen environ-
ments with respect to previous work. Future research efforts contemplate minimizing the lost perfor-
mance over previously seen maps and doing a qualitative analysis of the resulting attention weights.
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1A move adds, deletes, or swaps a behavior in the plan.
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