The Development of Pre-processing Tools and Pre-trained
Embedding Models for Amharic

Tadesse Destaw Belay Abinew Ali Ayele Seid Muhie Yimam
College of Informatics ICT4D Research Center Dept. of Informatics
Wollo University Bahir Dar University Universitat Hamburg
Kombolcha, Ethiopia Bahir dar, Ethiopia Hamburg, Germany
tadesseit@gmail.com abinewaliayele@gmail.com seid.muhie.yimam@uni-hamburg.de
Abstract

Ambharic is the second most spoken Semitic language after Arabic and serves as the
official working language of Ethiopia. While Amharic NLP research is getting wider
attentions recently, the main bottleneck is that the resources and related tools are not
publicly released, which makes it still a low-resource language. Due to this reason,
we observe that different researchers try to repeat the same NLP research again and
again. In this work, we investigate the existing approach in Amharic NLP and take
the first step to publicly release tools, datasets, and models to advance Amharic NLP
research. We build Python-based preprocessing tools for Amharic (tokenizer, sentence
segmenter, and text cleaner) that can easily be used and integrated for the development
of NLP applications. Furthermore, we compiled the first moderately large-scale Amharic
text corpus (6.8m sentences) along with the word2Vec, fastText, RoOBERTa, and FLAIR
embeddings models. Finally, we compile benchmark datasets and build classification
models for the named entity recognition task.

1 Introduction

Ambharic is the second most widely spoken Semitic language after Arabic (Eshetu et al., 2020).
It serves as the official working language of Ethiopia. It is written from left-to-right in Ge’ez
alphabets called &€& (Fiddl). While there are a lot of attempts at building natural language
processing (NLP) components for Amharic, it is a low-resource language without well-developed
NLP applications and resources. However, there are some Amharic NLP research, for example
Ambharic to English or other languages machine translation systems (Melese et al., 2017; Abate
et al., 2019), Amharic speech recognition (Abate and Menzel, 2007), Amharic Part-of-speech
tagging (PoS) (Gashaw and Shashirekha, 2020; Ibrahim and Assabie, 2014), Amharic named
entity recognition (NER) (Woldemariam and Dahlgren, 2020; Gambiéck and Sikdar, 2017), and
word embeddings (Grave et al., 2018).

While the emergence of NLP research for Amharic is encouraging, there is one chronic prob-
lem that endures almost in the last decade in Amharic NLP research, lack of publicly available
resources and tools. Researchers start conducting NLP experiments from scratch to collect data,
pre-processing, and train models, every time from scratch. We argue that, if Amharic NLP is
required to bring meaningful impacts in the already booming artificial intelligent applications
development, resources should be released publicly. The online publication of such NLP com-
ponents has a plethora of advantages, 1) it will lay the groundwork for other researchers, 2)
comparing benchmark results will be convenient, 3) adaptation makes the resources grow in size
and quality, and 4) both commercial and open source applications can share resources and allow
further contributions.

In this work, we mainly target the development of simple Amharic NLP pre-processing compo-
nents and tools. Furthermore, we also build embedding models which are the main components

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.

in the development of modern NLP applications. The embeddings are particularly required to
develop end-to-end deep learning-based NLP applications.

2 Pre-processing Tools

The development of every NLP component starts with data cleaning, language identification,
tokenization, segmentation, and normalization in the pipeline (Camacho-Collados and Pilehvar,
2018). This is particularly essential when the NLP component, such as sentiment analysis, is
build based on a dataset collected from the social media platforms (Twitter, YouTube, Facebook,
and so on). The absence of well-developed tokenization and segmentation tools makes Amharic
text pre-processing difficult. Essentially, the tokenizers and segmenters for other languages will
easily fail, as the Amharic language has its unique script(Fidél), syntax, and writing styles.

In the pre-processing of Amharic text, we remove none Ambharic tokens from the text. This
includes removing URLs, HTML tags and scripts, and different boilerplate content. The Python
Compact Language Detection Library (CLD2)! library is used to filter Amharic texts from other
languages including languages written in Fid&l script, such as Ge’ez and Tigrinya.

Text tokenization in Amharic is challenging, which can not be achieved using the default
"WhiteSpaceTokenizer’ available in many frameworks such as NLTK? and spaCy®. Consider the
following phrases, which are retrieved from an online news portal.

Example 2.1 Amharic tokenization examples
1): "APE €C 3/2012 A7 (5)" [Proclamation 3/2012 Article (5).

2): «B9° Tl APALL-19» 2014 9.9°: 12 [PAttention again for Covid-19” 2021.].

In the First example, a white space-based splitter will result in 4 tokens while there are
9 Ambharic tokens in reality including the punctuation marks. The second example is more
complex, where we should consider abbreviations (%.9°), quotation marks (¢«¢), years (1996),
and Ethiopic full stop (z:).

Regarding segmentation, in formal Amharic writing, each sentence has to be separated using
a unique punctuation mark, namely, the Ethiopic full stop, A&+t 1P0* (). Nowadays, people
also concatenate two Ethiopic commas (:) or double Latin commas (:) to terminate Amharic
sentences. As far as we know, there is no proper tool to tokenize words and segment sentences in
Ambharic. In this work, we have build and release the first publicly available Amharic tokenizer
and segmenter.

Another highly overlooked pre-processing task is homophone normalization, which aims to
normalize certain characters that have different forms in the same word into one form. There
are characters in Amharic that currently have the same sound (homophones). The current
trend regarding homophone normalization is, in most NLP research, homophone characters
are represented into a single representation and in some others are not applied. We build the
pre-trained embeddings models using regular (unnormalized) and normalized texts.

3 Pre-trained Embeddings Models

The availability of pre-trained word embedding models facilitated the development of many NLP
tasks. In this work, we build word2Vec (Mikolov et al., 2013a; Mikolov et al., 2013b), fastText
(Bojanowski et al., 2017), RoBERTa (Liu et al., 2019), and FLAIR (Akbik et al., 2018) pre-
trained models to generate embedding representation of words. We have collected moderately
large text corpus from social media (Twitter 2m sentences), news (2.5m sentences), and web
corpus (2.3m sentences), a total of 106m words from 6.8m sentences. The word2Vec embeddings

"ttps://pypi.org/project/pycld2
2http://www.nltk.org/book_ied/ch03.html
3https://spacy.io/

4iterally mean ’four points’

Models Regular models Normalized models
Precision Recall F1 Precision Recall F1
word2Vec_ CBOW__200D 79.4 67.5 73.0 | 81.0 68.9 74.5
word2Vec_ CBOW__300D 80.7 62.5 70.5 | 79.6 67.9 73.3
word2Vec_ Skip-Gram_ 200D | 83.6 61.3 70.7 | 82.6 60.1 69.6
word2Vec__Skip-Gram_ 300D | 82.4 62.7 71.2 | 83.5 61.6 70.9
fastText_ CBOW__ 200D 80.8 63.7 71.3 | 81.6 63.0 71.1
fastText_ CBOW__300D 81.8 66.5 73.4 | 81.8 67.7 74.1
fastText_ Skip-Gram_ 200D 84.9 59.7 70.1 | 85.0 64.1 73.1
fastText_ Skip-Gram_ 300D | 85.3 64.6 73.5 | 85.5 65.5 74.1
RoBERTa 70.1 68.4 69.2 | 72.3 67.9 70.0
FLAIR 81.5 774 79.4 | 80.2 75.9 77.8

Table 1: Experimental result for NER classification using different embedding models.

are trained based on the corpus we have collected using the Gensim Python Library (Rehtifek and
Sojka, 2011). Both the word2Vec and fastText models are trained using 200 and 300-dimensional
vectors, with their CBOW and SkipGram techniques and 10 epochs, while a window size of 5
and 10 are used for word2Vec and fastText respectively. We used a GPU (NVIDIA Quadro
RTX 6000 with 24GB RAM) to build both the RoBERTa and FLAIR contextual pre-trained
embedding models. FLAIR embedding has been built with parameters: “epochs” of 50, “mini-
batch size” of 32, and “block size” of 256. For the RoBERTa embedding, the parameters are:
“epochs” of 10, “mini-batch size” of 32, and “block size” of 512.

4 Natural Language Processing Task

In this section, we have discussed the NLP task for Amharic in light of the basic NLP components
and the utilization of embedding models we have discussed in the previous section (Section 3).
Named Entity Recognition (NER): NER is a process of extracting and classifying a specific
predefined list of entities from text. For this experiment, we have used the dataset released
by the New Mexico State University Computing Research Laboratory, which is annotated for
the SAY project. The data is annotated with 6 classes (PER, LOC, ORG, TIME, TTL, and
O-other) and it is available in GitHub®. We build sequence tagger-based NER models (BiLSTM
with CRF) (Akbik et al., 2018) using our pre-trained static and contextual embedding models.
Table 1 shows the performance of different NER models, and we have seen that the model
trained with regular contextual FLAIR embeddings performs better than other models.

5 Conclusion and Future Work

In this work, we studied existing text preprocessing approaches and built the first publicly
available tools for Amharic. The main components of the preprocessing tool included text
cleaning, language identification, word tokenization, and sentence segmentation. Moreover, as
more and more NLP applications have relied on deep learning approaches, we have collected
around 6.8m sentences and built word2Vec, fastText, RoBERTa, and FLAIR embedding models.
The corpus and the embedding models will be used to further develop advanced embedding
models. Finally, we compiled benchmark dataset for NER and released baseline models that
can be readily used in downstream NLP applications®. In the future, we plan to improve our
text processing component, for example adding a text normalization component based on expert
decisions. We also planned to build other contextualized transformer-based models.

*https://github.com/geezorg/data/tree/master/amharic/tagged/nmsu-say
SDataset, models, and source codes are available here: https://github.com/Tadesse-Destaw/
Imacts-of-homopnone-normalization

References

Solomon Teferra Abate and Wolfgang Menzel. 2007. Syllable-based speech recognition for Ambharic.
In Proceedings of the 2007 Workshop on Computational Approaches to Semitic Languages: Common
Issues and Resources, pages 33-40, Prague, Czech Republic, June. Association for Computational
Linguistics.

Solomon Teferra Abate, Michael Melese, Martha Yifiru Tachbelie, Million Meshesha, Solomon Atinafu,
Wondwossen Mulugeta, Yaregal Assabie, Hafte Abera, Biniyam Ephrem, Tewodros Gebreselassie,
Wondimagegnhue Tsegaye Tufa, Amanuel Lemma, Tsegaye Andargie, and Seifedin Shifaw. 2019.
English-Ethiopian languages statistical machine translation. In Proceedings of the 2019 Workshop on
Widening NLP, pages 27-30, Florence, Italy, August. Association for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf. 2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th international conference on computational linguistics, pages 1638—
1649.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. Enriching word vectors
with subword information. Transactions of the Association for Computational Linguistics, 5:135—146.

Jose Camacho-Collados and Mohammad Taher Pilehvar. 2018. On the role of text preprocessing in
neural network architectures: An evaluation study on text categorization and sentiment analysis. In
Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, pages 40-46, Brussels, Belgium, November. Association for Computational Linguistics.

Abebawu Eshetu, Getenesh Teshome, and Tewodros Abebe. 2020. Learning word and sub-word vectors

for amharic (less resourced language). International Journal of Advanced Engineering Research and
Science (IJAERS), 7:358-366.

Bjorn Gambick and Utpal Kumar Sikdar. 2017. Named entity recognition for amharic using deep
learning. In 2017 IST-Africa Week Conference (IST-Africa), pages 1-8. IEEE.

Ibrahim Gashaw and H L Shashirekha. 2020. Machine learning approaches for amharic parts-of-speech
tagging. arXiv preprint arXiv:2001.03324.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. arXiv preprint arXiv:1802.06893.

Abeba Ibrahim and Yaregal Assabie. 2014. Amharic sentence parsing using base phrase chunking. In
International Conference on Intelligent Text Processing and Computational Linguistics, pages 297-306.
Springer.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692.

Michael Melese, Laurent Besacier, and Million Meshesha. 2017. Amharic-english speech translation in
tourism domain. In Proceedings of the Workshop on Speech-Centric Natural Language Processing,
pages 59-66.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013b. Distributed repre-
sentations of words and phrases and their compositionality. arXiv preprint arXiv:1310.4546.

Yonas Woldemariam and Adam Dahlgren. 2020. Adapting language specific components of cross-media
analysis frameworks to less-resourced languages: the case of Amharic. In Proceedings of the 1st Joint
Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration
and Computing for Under-Resourced Languages (CCURL), pages 298-305, Marseille, France, May.
European Language Resources association.

Radim Rehtifek and Petr Sojka. 2011. Gensim — Statistical Semantics in Python. In EuroScipy 2011,
Paris, France.

