Innia

Comparing Word Representations for Implicit Discourse Relation Classification

Chloé Braud[★] & Pascal Denis[♦]

*Alpage, Univ. Paris 7 - INRIA Paris * INRIA Lille

firstname.lastname@inria.fr

Implicit Discourse Relations

• Implicit relations: no explicit cues

 S_1 [Quarterly revenue **rose** 4.5%, to \$2.3 billion from \$2.2 billion] (whereas/Comparison) S_2 [For the year, net income **tumbled** 61% to \$86 million, or \$1.55 a share]

• **Complex problem**: lexical, syntactic, temporal, semantic, world knowledge ...,

1. Using a lot of hand-crafted resources and automatic tools:

-Available but for a few languages and need pre-processing

Proposed Strategy

Are unsupervised word representations useful for discourse relation classification?

 \rightarrow **Dense** representation **available** for virtually any language

Open Questions

- . Word Representations What are the most relevant word representations? \rightarrow Compare various word representations: **one-hot**, **cluster-induced** (Rutherford) and Xue 2014) or **dense real-valued** (Ji and Eisenstein 2014).
- 2. Vector Combination How to use word representations for a pair of arguments? \rightarrow Compare various ways to build a composite vector: **summation** and **concatenation** (\oplus) or **Kroenecker product** (\otimes) .

2. Using word-based information in the form of word pairs: $(S_1, S_2) \rightarrow \langle (\text{Quarterly, For}), (\text{Quarterly, the}), \ldots, (\text{billion, share}) \rangle \rangle$

-Easy to build but **one-hot encoding**: **very sparse**

Framework

Word Representations

 \rightarrow Associate a word to a mathematical object, typically a vector in $\{0,1\}^{|\mathcal{V}|}$ or $\mathbb{R}^{|\mathcal{V}|}$, where \mathcal{V} is a base vocabulary

One-hot Word Representations

• Crudest but most common

• Word $w \mapsto \mathbb{1}_w$, d-dimensional indicator vector, $d = |\mathcal{V}|$

Cluster-based One-hot Word Representations • Learning word representations using hierarchical clustering (Brown et al. 1992)

- Group words in $|\mathcal{C}|$ clusters with $|\mathcal{C}| \ll |\mathcal{V}|$
- Word $w \mapsto \mathbb{1}_w$, k-dimensional indicator vector, $k = |\mathcal{C}|$

Dense Real-Valued Word Representations

3. **Important Words** Are all the words in the segments of equal importance? \rightarrow Compare using **all words** or just **head words**.

Experiments

• Dataset Penn Discourse Treebank (Prasad et al. 2008), Train: 2-20, Test: 21-22 • Labels level 1 relations: Temporal, Contingency, Comparison, Expansion • **Model** MaxEnt + Sample weighting to deal with class imbalance

F_1 score for the best systems using only head words

Repr.	Temp	Cont	Comp	Expa
$\mathit{One-hot} \otimes$	11.96	43.24	17.30	69.21
$\mathit{One}{ ext{-}hot} \oplus$	23.01	49.40	29.23	59.08
$Brown \otimes$	22.91	45.74	25.83	68.76
$Brown \oplus$	21.84	47.36	27.52	61.38
$Embed. \ \otimes$	23.88	51.29	30.59	58.59
$Embed. ~\oplus$	22.48	47.48	29.82	57.45

• Heads carry a lot of information • Using a dense representation is crucial

0

PARIS

• Word embeddings are better for heads only

F1 score for the best systems using all words

- Learning distributed word representations using neural language models (Collobert and Weston 2008, Turian et al. 2010)
- Building distributional word representations using context frequencies and dimensionality reduction, i.e. Hellinger PCA (Lebret and Collobert 2014)
- Represent each word by a vector of p dimensions with $p \ll |\mathcal{V}|$
- Word $w \mapsto \mathbf{v}$, *p*-dimensional real-valued vector

Vector Combination

 \rightarrow Generic feature function mapping pairs of segments to a *d*-dimensional real vector:

 $\Phi: \mathcal{V}^n \times \mathcal{V}^m \to \mathbb{R}^d, \qquad (S_1, S_2) \mapsto \Phi(S_1, S_2)$

Representation Based on Head Words

(rose,tumbled) \mapsto one vector

• One-hot Representations: $\blacktriangleright \Phi_{h,\mathbb{1},\oplus}(S_1,S_2) = \mathbb{1}_{\text{rose}} \oplus \mathbb{1}_{\text{tumbled}} \in \{0,1\}^{2|\mathcal{V}_h|}$ $\blacktriangleright \Phi_{h,\mathbb{1},\otimes}(S_1,S_2) = \operatorname{vec}(\mathbb{1}_{\operatorname{rose}} \otimes \mathbb{1}_{\operatorname{tumbled}}) \in \{0,1\}^{|\mathcal{V}_h|^2}$

• Dense Representations:

 $\blacktriangleright \Phi_{h,M,\oplus}(S_1,S_2) = M^{\top} \mathbb{1}_{\text{rose}} \oplus M^{\top} \mathbb{1}_{\text{tumbled}} \in \mathbb{R}^{2p}$ $\blacktriangleright \Phi_{h, \boldsymbol{M}, \boldsymbol{\otimes}}(S_1, S_2) = \operatorname{vec}(\boldsymbol{M}^\top \mathbb{1}_{\operatorname{rose}} \otimes \boldsymbol{M}^\top \mathbb{1}_{\operatorname{tumbled}}) \in \mathbb{R}^{p^2}$

 $\mathcal{V}_h \subset \mathcal{V}$ the set of head words M a $n \times p$ real matrix, i^{th} row $\rightarrow p$ -dimensional embedding of the i^{th} word of \mathcal{V}_h

I I DECICI OI UNE DEDU DYDUCIND UDING UN WOLUN
--

- Need other words: all words give the highest performance
- Brown clusters are better when dealing with all words: could come from the increased number of dimensions to combine or the summation strategy

36.46

34.34

36.36

50.00

62.57

61.76

- Dense representations are always better
- **Product is generally better**: keep combination information
- The best representation is relation dependent

 F_1 score for the best systems using all words and extra features

▷ How much improvement can be obtained by **adding** other **standard features**?

• State-of-the-art performance or above when adding extra features

• But improvements are not significant against using only dense representations

Repr.	Temp	Cont	Comp	Expa
(Ji and Eisenstein, 2014)	26.91	51.39	35.84	79.91
(Rutherford and Xue, 2014)	28.69	54.42	39.70	70.23

Representation Based on All Words

 S_1 [Quarterly revenue rose 4.5%, to \$2.3 billion from \$2.2 billion] \mapsto one vector

• Summing over the pairs of words vectors composing the segments

 $(S_1 = \{\text{Quaterly}, \dots, \text{billion}\}, S_2 = \{\text{For}, \dots, \text{share}\}) \mapsto \text{one vector}$

• One-hot Representations: $\blacktriangleright \Phi_{all,\mathbb{1},\oplus}(S_1,S_2) = \sum_i^n \sum_j^m \mathbb{1}_{w_{1_i}} \oplus \mathbb{1}_{w_{2_i}} \in \mathbb{Z}_{\geq 0}^{2|\mathcal{V}|}$

 $\blacktriangleright \Phi_{all,1,\otimes}(S_1,S_2) = \sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{vec}(\mathbb{1}_{w_{1_i}} \otimes \mathbb{1}_{w_{2_j}}) \in \mathbb{Z}_{>0}^{|\mathcal{V}|^2}$

• Dense Representations:

 $\blacktriangleright \Phi_{all,\boldsymbol{M},\oplus}(S_1,S_2) = \sum_{i,j}^{n,m} \boldsymbol{M}^{\top} \mathbb{1}_{w_{1_i}} \oplus \boldsymbol{M}^{\top} \mathbb{1}_{w_{2_j}} \in \mathbb{R}^{2p}$ $\blacktriangleright \Phi_{all,\boldsymbol{M},\otimes}(S_1,S_2) = \sum_{i,j}^{n,m} \operatorname{vec}(\boldsymbol{M}^{\top} \mathbb{1}_{w_{1_i}} \otimes \boldsymbol{M}^{\top} \mathbb{1}_{w_{2_i}}) \in \mathbb{R}^{p^2}$ repr. (Rutherford and Xue, 2014) 24.7953.39 $One-hot \otimes all + add.$ feats 23.2654.41Best all + add. feats 29.3055.76

• Dense representations already provide most of the semantic and syntactic information relevant to the task

• Alleviate the need for traditional external resources

Perspectives

• Try other combination schemes (Blacoe and Lapata 2012, Le and Mikolov 2014) • Adapt word representations to the task (Labutov and Lipson 2013, Conrath et al. 2014)