
Non-Monotonic Sequential Text Generation

Sean Welleck1, Kianté Brantley2, Hal Daumé III2,3 and Kyunghyun Cho1,4,5

1New York University 2University of Maryland 3Microsoft Research
4CIFAR Azrieli Global Scholar 5Facebook AI Research

wellecks@nyu.edu, kdbrant@cs.umd.edu, me@hal3.name, kyunghyun.cho@nyu.edu

1 Introduction
are

how
?

you <end>

<end>

<end>

<end>

<end>

1

2 3

4 5

6 7

8 9

4

1

8

3

2

5

6

7

9

Figure 1: “how are you ?”, generated by our ap-
proach. The model first generated “are” and then
recursively generated left and right subtrees (“how”
and “you ?”, respectively). At each step, the model
may either generate a token, or an 〈end〉 token,
which indicates that this subtree is complete. The
generation is performed in level-order (numbers in
left green squares); the output is read off in-order
(numbers in right rounded blue squares).

Most sequence-generation models, from n-grams (Bahl,
Jelinek, and Mercer, 1983) to neural language models
(Bengio, Ducharme, Vincent, and Jauvin, 2003) generate
sequences in a purely left-to-right, monotonic order. This
raises the question of whether alternative, non-monotonic
orders are worth considering (Ford, Duckworth, Norouzi,
and Dahl, 2018), especially given the success of “easy
first” techniques in natural language tagging (Tsuruoka
and Tsujii, 2005), parsing (Goldberg and Elhadad, 2010),
and coreference (Stoyanov and Eisner, 2012), which allow
a model to effectively learn their own ordering.

We propose a framework for training sequential text
generation models which learn a generation order with-
out having to specify an order in advance. In contrast to
the default left-to-right model where the generation order
is fixed, our model learns the sequence generation order without any extra supervision. We frame the
learning problem as an imitation learning problem, in which we aim to learn a generation policy that
mimics the actions of an oracle generation policy (§2). Because the tree structure is unknown at training
time, the oracle policy cannot know the exact correct actions to take.

Specifically, we consider the problem of sequentially generating a sequence of discrete tokens Y =
(w1, . . . , wN), such as a natural language sentence, where wi ∈ V , a finite vocabulary. Let Ṽ =
V ∪ {〈end〉}. The generation process deterministically navigates a state space S = Ṽ ? where a state
s ∈ S corresponds to a sequence of tokens from Ṽ . We interpret this sequence of tokens as a top-down
traversal of a binary tree, where 〈end〉 terminates a subtree. An action a is an element of Ṽ which is
appended to the state. Terminal states are those for which all subtrees have been 〈end〉’ed.

A policy π is a (possibly) stochastic mapping from states to actions, and we denote the probability of
an action a ∈ Ṽ given a state s as π(a|s). There are many unique binary trees with an in-order traversal
equal to a sequence Y ; thus the policy is capable of choosing from many different generation orders for
Y . Note that left-to-right generation can be recovered if π(〈end〉|st) = 1 if and only if t is odd (or
non-zero and even for right-to-left generation).

This learning problem is challenging because the sequences Y alone only tell us what the final output
sequences of words should be, but not what tree(s) should be used to get there. In left-to-right generation,
the observed sequence Y fully determines the sequence of actions to take. In our case, however, the tree
structure is effectively a latent variable, which will be determined by the policy itself. At training time,
we do know which words should eventually appear, and their order; this substantially constrains the
search space that needs to be explored, suggesting learning-to-search (Daumé, Langford, and Marcu,
2009) and imitation learning (Ross, Gordon, and Bagnell, 2011; Ross and Bagnell, 2014) approaches.

2 Learning to Search

We aim to learn a policy π that mimics an oracle (or “reference”) policy π∗. To do so, we define a
roll-in policy πin and roll-out policy πout. The roll-in policy determines the state distribution over which

Oracle %Unique %Novel Avg.
Span

BLEU

left-right 97.0 17.8 1.0 47.0
uniform 99.9 98.3 1.43 40.0
annealed 98.2 93.1 1.31 56.2

Validation 100 12.1 - -

Test
Oracle BLEU (BP) Meteor YiSi Ribes

left-right 26.23 (1.00) 27.87 47.58 79.85

uniform 13.17 (0.64) 19.87 36.48 75.36
+〈end〉-tuning 17.68 (0.96) 24.53 42.46 74.12

annealed 16.94 (0.72) 23.15 42.39 78.99
+〈end〉-tuning 19.19 (0.91) 25.24 43.98 79.24

Table 1: Left:Unconditional language model results; Right:Machine Translation results.

the learned policy π is to be trained. We repeatedly draw states s according to the state distribution
induced by πin, and compute cost-to-go under πout. The learned policy π is then trained to choose
actions to minimize this cost-to-go estimate. Formally, denote the uniform distribution over {1, . . . , T}
as U [T]; dtπ as the distribution of states induced by running π; and C(π;πout, s) a scalar cost measuring
the loss incurred by π against the cost-to-go estimates under πout. Then, the quantity being optimized is:
EY∼DEt∼U [2|Y |+1]Est∼dt

πin
[C(π;πout, st)]. Learning consists of finding a policy which only has access

to states st but performs as well or better than π∗. There are many ways to measure the prediction cost
C(π;πout, s); we use a KL-divergence type loss, measuring the difference between the action distribution
produced by π and the action distribution preferred by πout.

All the oracles we consider have access to the ground truth output Y , and the current state s. We
interpret the state s as a partial binary tree and a “current node” in that binary tree where the next
prediction will go. Given the consecutive subsequence Yt = (w′1, . . . , w

′
N ′), an oracle policy is:

π∗(a|st) = 1[a = 〈end〉 and Yt = 〈〉] + pa1[a ∈ Yt]
where the pas are arbitrary such that

∑
a∈Y pa = 1. An oracle policy places positive probability only

on valid actions, and forces an 〈end〉 output if there are no more words to produce. When an action a
is chosen, at st, this “splits” the sub-sequence Yt = (w′1, . . . , w

′
N ′) into left and right sub-sequences,

←−
Y t = (w′1, . . . , w

′
i−1) and

−→
Y t = (w′i+1, . . . , wN), where i is the index of a in Yt. (This split may not be

unique due to duplicated words in Yt, in which case we choose a valid split arbitrarily.)
Uniform Oracle: Motivated by Welleck, Yao, Gai, Mao, Zhang, and Cho (2018), π∗uniform gives

uniform probabilities pa = 1/n for all words in Yt where n is the number of unique words in Yt.
Coaching Oracle: An issue with the uniform oracle is that it does not prefer any specific set of gen-
eration orders; motivated by this, we design a coaching oracle as the product of the uniform oracle and
current policy π: π∗coaching(a|s) ∝ π∗uniform(a|s) π(a|s). Annealed Coaching Oracle: The coaching
oracle gives rise to an issue in the early stage of learning, as it does not encourage learning to ex-
plore a diverse set of generation orders; we thus design a mixture of the uniform and coaching policies:
π∗annealed(a|s) = βπ∗uniform(a|s) + (1− β)π∗coaching(a|s).

3 Experiments

We experiment with our model across two tasks: unconditional generation (e.g. language modeling)
using the Persona-Chat (Zhang, Dinan, Urbanek, Szlam, Kiela, and Weston, 2018) dialogue dataset and
conditional generation (e.g. machine translation) using IWSLT’16 German→ English (196k pairs).

For the unconditional language model task we computed statistics over 10,000 samples for each policy
trained. In table 1, we see that our models tend to generated more novel sentences (i.e. sentences not in
training data) and more unique sentences (i.e. sentences that are not duplicates). The average span (i.e.
average number of children per node) is higher than one which means our models generate more bushy
trees.

We evaluated our Machine Translation results on four (very) different evaluation measures: BLEU,
Meteor (Lavie and Agarwal, 2007), YiSi (Lo, 2018), and Ribes (Isozaki, Hirao, Duh, Sudoh, and
Tsukada, 2010). The most dramatic score difference is the drastically superior performance of left-right
according to BLEU. We found that the annealed model significantly outperforms the left-right model in
1- and 2-gram precision, ties for 3-gram, and loses for 4-gram; see Table 1, right.

References

Lalit R Bahl, Frederick Jelinek, and Robert L Mercer. 1983. A maximum likelihood approach to contin-
uous speech recognition. IEEE transactions on pattern analysis and machine intelligence, 5(2):179–
190.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. 2003. A neural probabilistic
language model. Journal of machine learning research, 3(Feb):1137–1155.

Hal Daumé, John Langford, and Daniel Marcu. 2009. Search-based structured prediction. Machine
learning, 75(3):297–325.

Nicolas Ford, Daniel Duckworth, Mohammad Norouzi, and George E Dahl. 2018. The importance of
generation order in language modeling. arXiv preprint arXiv:1808.07910.

Yoav Goldberg and Michael Elhadad. 2010. An efficient algorithm for easy-first non-directional de-
pendency parsing. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 742–750. Association for
Computational Linguistics.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito Sudoh, and Hajime Tsukada. 2010. Automatic
evaluation of translation quality for distant language pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing, pages 944–952. Association for Computational
Linguistics.

Alon Lavie and Abhaya Agarwal. 2007. Meteor: An automatic metric for mt evaluation with high levels
of correlation with human judgments. In Proceedings of the Second Workshop on Statistical Machine
Translation, pages 228–231. Association for Computational Linguistics.

Chi-kiu Lo. 2018. YiSi: A semantic machine translation evaluation metric for evaluating languages with
different levels of available resources. Unpublished.

Stephane Ross and J Andrew Bagnell. 2014. Reinforcement and imitation learning via interactive no-
regret learning. arXiv preprint arXiv:1406.5979.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 627–635.

Veselin Stoyanov and Jason Eisner. 2012. Easy-first coreference resolution. Proceedings of COLING
2012, pages 2519–2534.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirectional inference with the easiest-first strategy for
tagging sequence data. In Proceedings of the conference on human language technology and empirical
methods in natural language processing, pages 467–474. Association for Computational Linguistics.

Sean Welleck, Zixin Yao, Yu Gai, Jialin Mao, Zheng Zhang, and Kyunghyun Cho. 2018. Loss functions
for multiset prediction. In Advances in Neural Information Processing Systems, pages 5788–5797.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. 2018.
Personalizing dialogue agents: I have a dog, do you have pets too? In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2204–2213,
Melbourne, Australia. Association for Computational Linguistics.

http://chikiu-jackie-lo.org/home/index.php/yisi
http://chikiu-jackie-lo.org/home/index.php/yisi

	Introduction
	Learning to Search
	Experiments

