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Abstract

We critique recent work on ethics in natural language processing. Those discussions have focused
on data collection, experimental design, and interventions in modeling. But we argue that we
ought to first understand the frameworks of ethics that are being used to evaluate the fairness and
justice of algorithmic systems. Here, we begin that discussion by outlining deontological ethics,
and envision a research agenda prioritized by it.

Due to the sheer global reach of machine learning and NLP applications, they are empowered to
impact societies (Hovy and Spruit, 2016) - potentially for the worse. Potential harms include exclusion
of communities due to demographic bias, overgeneralization of model predictions to amplify bias or
prejudice, and overstepping privacy concerns in the pursuit of data and quantification (Mieskes, 2017).

Many researchers are trying to make sense of these topics. Crawford (2017) give us theory to work
from, presenting allocational harm and representational harm; Lewis et al. (2017) examines the role
of government regulation on accountability in ethics; Smiley et al. (2017) opens a discussion on ethics
checklists for acceptance testing and deployment of trained models. All of these works identify potential
ethical issues for NLP, and all propose best practices for data collection and research conduct. But
presently there is no external accountability for which approach to ethical NLP is correct - as machine
learning researchers, we are evaluating ourselves, on metrics of our own choosing. Much of the existing
work on ethics in NLP is normative - evaluation of whether a system “does the right thing.” We argue
that before the field can establish normative goals, we need to reason about meta-normative decisions:
specifically, how do we even decide what it means to be “right”?

We believe that it is time for a more impartial arbitration of ethics in our field, emphasizing the need
for a grounding in frameworks that long predate the questions we’re faced with today. By reaching out to
other fields, we keep the question of ethics at arms length from our own work, giving us a neutral playing
field on which to judge ethical performance of machine learning systems. Philosophy has much to offer
us; we describe two competing frameworks: the generalization principle and the utilitarian principle.

Ethics under the generalization principle:

[An ethical decision-maker] must be rational in believing that the reasons for action are con-
sistent with the assumption that everyone with the same reasons will take the same action.1

This approach is founded on the work of Kant (1785), which fundamentally prioritizes intent as the
source of ethical action. To analyze this in machine learning, we state that a trained agent A is expected
to take an action di based on a given set of evidence Ei, from a finite closed set of options D. This simple
notation can be extended to classification, regression, or reinforcement learning tasks. The generalization
principle states that agent A is ethical if and only if, when given two identical sets of evidence E1 and E2

with the same inputs, agent A chooses to make same decision d1 every time. Furthermore, the principle
assumes that all other such trained agents will also make those same predictions.

Here, we presume that the input representation is sufficient to make a prediction, without including
any extraneous information. The reasons for an act define the scope of the act, or the set of necessary

1From Hooker (2018b).



and sufficient conditions under which that act is generalizably moral (Hooker, 2018a). Evidence must
be relevant to the decision making process, and moreso must exclude task-irrelevant evidence that might
be a source of bias. By excluding such evidence, our agent is invariant to who is being evaluated, and
instead focuses its decision solely on task-relevant evidence.

This goal cannot be met without transparent and sparsely weighted inputs that do not use more in-
formation than is necessary and task-relevant for making predictions. Practically, this definition would
privilege research on interpretable, generalizable, and understandable machine learning classifiers. The
burden of proof of ethics in such a framework would lie on transparency and expressiveness of inputs,
and well-defined, expected behavior from architectures for processing those features. Some work on this
- like that from Hooker and Kim (2018) - has already begun. If deontological ethics were prioritized, we
would expect to see rapid improvement in parity of F1 scores across subgroups present in our training
data - an outcome targeted by practitioners like Chouldechova (2017) and Corbett-Davies et al. (2017).

Ethics under the utilitarian principle:

An action is ethical only if it is not irrational for the agent to believe that no other action results
in greater expected utility. 2

In this formulation, which can be traced back to Bentham (1789), an algorithmic system is expected to
understand the consequences of its actions. We measure systems by whether they maximize total overall
welfare in their results. We once again train an agent A, which will make a decision di for each evidence
set Ei. But here, we also assign a utility penalty or gain ui for each of those decisions. Rather than judge
the algorithm based on whether it followed consistent rules, we instead seek to maximize overall gain
for all N decisions that would be made by agent A - morality of an agent is equal to ΣN

i ui.
This is a very different worldview! Here, the burden of provable ethical decision-making no longer

lands on transparency in the algorithm or consistency of a classifier over time. Instead, proof of ethical
behavior rests on our ability to observe the consequences of the actions the agent takes. One could
argue that consequences are hard to estimate and hence we can pick a random action. But that would be
irrational. Hence, the principle judges an action by whether the agent acts according to its rational belief
of maximizing the expected utility, rather than by the actual consequences. If the agent is wrong then the
action turns out to be a poor choice, but nonetheless ethical because it was a rational choice.

In Crawford (2017), the author appeals to researchers to actively consider the subgroups that will be
harmed or benefited by the automated systems. This plotting of expected consequences and their ex-
haustive measurement takes precedence in utilitarian ethics, de-prioritizing the interpretability or trans-
parency of the learned model or features that govern our agent. For machine learning researchers, this
would mean shifting the focus toward building rich and exhaustive test datasets, cross-validation proto-
cols, and evaluation suites that mirror real-world applications to get a better measurement of impact.

From this work, we might see an initial drop in reported accuracy of our systems as we develop broader
test sets that measure the utility of our systems; however, we would then expect overall accuracy on those
broad test sets to be the primary measure of ethical fitness of the classifiers themselves. Subgroup-based
parity metrics would fall by the wayside in favor of overall accuracy on data that mirrors the real world.

Real World Scenarios: These philosophical frameworks do not always diverge in their evaluation of
models. Sometimes, models have unambiguously unethical gaps in performance. The exploration from
Tatman (2017), for instance, shows the difference in accuracy of YouTube’s automatic captioning system
across both gender and dialect with lower accuracy for women and speakers from Scotland (shown in
Figure 1, reproduced from the original work). This study shows how this system violates the utilitarian
principle by negatively impacting the utility of automatic speech recognition for women and speakers
from Scotland. YouTube’s model also violates the generalization principle, by incorporating superfluous
information about speakers in the representation space of the models. The authors suggest paths forward
for improving those models and show that there is room to improve.

2From Hooker (2018a).



(a) YouTube automatic caption word error rate by
speakers dialect region. Points indicate individual speakers.

(b) YouTube automatic caption word error rate by speakers
gender. Points indicate individual speakers.

Figure 1: Word Error rate plots for gender and dialect (Tatman, 2017)

But sometimes, solutions highlight differences across ethical frameworks. In Hovy (2015), for in-
stance, the author shows that text classification tasks, both sentiment and topic classification, benefit from
embeddings that include demographic information (age and gender). Here, the two ethical frameworks
we have discussed diverge in their analysis. The generalization principle would reject this approach: age
and gender shouldn’t intrinsically be used as part of a demographic-agnostic topic classification task, if
the number of sources of information is to be minimized. Similarly, changing the feature space depend-
ing on the author, rather than the content of the author’s text, does not result in models that will make the
same decision about a text independent of the identity of the author. The utilitarian principle, in contrast,
aligns with the Hovy approach. A more accurate system benefits more people; incorporating informa-
tion about authors improves accuracy, and so including that information at training and prediction time
increases the expected utility of the model, even if different authors may receive different predictions
when submitting identical texts.

For an alternate example in which the generalization principle was prioritized over utility, consider
the widely-cited coreference resolution system of Bolukbasi et al. (2016). This paper found that word
embeddings used for coreference resolution were incorporating extraneous information about gender -
for instance, that doctors were more likely to be men, while nurses were more likely to be women.
This and similar work in “debiasing” word embeddings follows the generalization principle, arguing that
removing information from the embedding space is ethically the correct action, even at the expense of
model accuracy. The authors of the Bolukbasi work do find that they can minimize the drop in expected
utility, reducing F1 scores by less than 2.0 while removing stereotypes from their model. However, in
a fully utilitarian ethical framework, even this drop would be unjustifiable if the model simply reflected
the state of the world, and removing information led to reduced performance.

Call to Action: As a field, we risk building an incoherent set of research on fairness and ethics if we do
not address these questions early. We recommend researchers ground their work in philosophical theory,
rather than in arbitrary measurement of metrics invented for and by ourselves. We recommend reuse and
replication of these methods, to ensure a common vocabulary and language within our field. And while
we do not take a stance on the sole correct ethical framework to follow - a debate going back at least
to Aristotle - we targue for a rational discourse that acknowledges history and leads our field to a richer
definition of fairness and ethics, for the sake of better systems that we put out into the world.
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